The supersingular isogeny problem in genus ≥ 2

Benjamin Smith + Craig Costello ECC 2019 // Bochum, DE // 2/12/2019

Inria + École polytechnique + Microsoft Research

(Supersingular) isogeny-based crypto

Set of supersingular elliptic curves:

 $S_1(p) := \left\{ \mathcal{E}/\mathbb{F}_{p^2} \text{ supersingular} \right\} / \cong$

Isogeny graph $\Gamma_1(\ell; p)$: vertices = $S_1(p)$, edges = ℓ -isogenies. An $(\ell + 1)$ -regular Ramanujan graph with $\#S_1(p) \approx p/12$ vertices.

Isogeny problem: given \mathcal{E} and \mathcal{E}' in $S_1(p)$, find a path $\mathcal{E} \to \cdots \to \mathcal{E}'$ in $\Gamma_1(\ell; p)$.

- classical algorithms: $O(\sqrt{\#S_1(p)}) = O(\sqrt{p})$
- quantum algorithms: $O(\#S_1(p)^{1/4}) = O(p^{1/4})$

Inevitable question: what happens if we do the equivalent of ECC \rightarrow HECC, i.e. replace elliptic curves with *g*-dimensional abelian varieties?

What happens in dimension g > 2

Replace supersingular elliptic curves (dimension g = 1) with **superspecial** g-dimensional principally polarized abelian varieties over \mathbb{F}_{p^2} .

 \mathcal{A} in $S_g(p) \implies \mathcal{A}$ is isogenous to a **product** $\mathcal{E}_1 \times \cdots \times \mathcal{E}_g$ of **supersingular** ECs.

Set $S_q(p)$ with $O(p^{g(g+1)/2})$ elements.

Graph $\Gamma_g(\ell; p)$ are connected $(\ell^{g(g+1)/2} + \cdots)$ -regular graphs.

First examples of higher-dimension superspecial cryptosystems:

- Takashima hash function in $\Gamma_2(2; p)$
- Castryck–Decru–Smith hash function in $\Gamma_2(2; p)$
- Flynn–Ti SIDH analogue in $\Gamma_2(2; p)$ and $\Gamma_2(3; p)$

Balancing graph sizes:

$$\#S_g(p) \approx \#S_1(q)$$
 with $\log q \approx \frac{1}{2}g(g+1)\log p$.

Implicit hypothesis in existing work: solving isogeny problems in $\Gamma_g(\ell; p)$ is as hard as solving them in $\Gamma_1(\ell; q)$.

classical $O(p^{g(g+1)/4})$ with random walks, quantum $O(p^{g(g+1)/8})$ with Grover etc.

Notice: complexities exponential in *p*, with exponent quadratic in *g*.

 \implies Tradeoff: work in dimension g and use p of much smaller bitlength.

E.g. moving from g = 1 to g = 2: use \mathbb{F}_p with p one-third the size.

Theorem: (Costello–S. 2019): path-finding in $\Gamma_g(\ell; p)$ is only classical $O(p^{g-1})$ and quantum $O(p^{(g-1)/2})$. Exponents linear, not quadratic, in g.

Idea: Large subgraphs corresponding to products $\mathcal{A}_g \cong \mathcal{A}_{g-1} \times \mathcal{E}$.

- 1. Can walk into subgraph after $O(p^{g-1})$ short walks.
- 2. Recurse down into $S_1(p)^g$.
- 3. Solve *g* independent elliptic isogeny problems, take the product of the results.

Conclusion: don't do g > 1: tradeoff unlikely to be favourable.

Eprint: later this week.